If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+28x-8=0
a = 2; b = 28; c = -8;
Δ = b2-4ac
Δ = 282-4·2·(-8)
Δ = 848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{848}=\sqrt{16*53}=\sqrt{16}*\sqrt{53}=4\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{53}}{2*2}=\frac{-28-4\sqrt{53}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{53}}{2*2}=\frac{-28+4\sqrt{53}}{4} $
| 2x=20-8x-2 | | 2.5p+1p=102 | | 8x+-12=3x+28 | | 9+3f=18f= | | (x-2)*(x+6)=18- | | 5x-20=(x-4)*x | | 2x-3+×+×=180 | | 5/9(3+y)=40 | | 6x=8x+100 | | y+-3=-8= | | -9.07(-9x-1)=16 | | (x^2-8x+16)/(x^2)=30 | | 13^-x=6 | | x^2+x-6=2x+12 | | 5m+8=4-3m | | X(3x)=80 | | (k-5)/2=11 | | 22=-8x+2-2x | | 3(2d+4)=18 | | (x+50)+(60+2x)+(5x-10)=180x= | | 11g−7g−–2g=–6 | | 3+1/4a=12+a | | -59=-x/2 | | 5a=a+52 | | p+60=3p | | 10^-x=5^4x | | 1/4+1/5=x-3/20 | | ((83.2-x)/83.2)(100)/(0-10)=-0.6 | | ((83.2-x)/83.2)(100/(0-10)=-0.6 | | ((83.2-x)/83.2x100)/(0-10)=-0.6 | | ((83.2-x)x100)/(0-10)=-0.6 | | 2(x+2)–x=x+2 |